TY - JOUR
T1 - Yield estimation based on agronomic traits in vegetables under different biochar levels
AU - Ccopi, Dennis
AU - Requena-Rojas, Edilson
AU - Arias-Arredondo, Alberto
AU - Taipe, Maglorio
AU - Marcelo, Jhonny
AU - Pizarro, Samuel
N1 - Publisher Copyright:
© 2025 The Authors
PY - 2025/10
Y1 - 2025/10
N2 - Biochar, a carbon-rich material produced through oxygen-limited pyrolysis of organic biomass, demonstrates exceptional potential as a soil amendment due to its porous structure and stability. This research investigated the impact of guinea pig manure biochar on three vegetable species cultivated in high Andean conditions: spinach (Spinacia oleracea L.), cabbage (Brassica oleracea var.), and chard (Beta vulgaris var.). The study implemented four biochar application rates (0, 10, 20, and 30 t/ha) and measured comprehensive agronomic parameters including leaf count, leaf length, and fresh/dry biomass of both leaves and roots. Simultaneously, UAV-captured multispectral imagery provided spectral indices that were integrated with agronomic data into machine learning models: linear regression, support vector machines (SVM), and regression trees (CART). Results demonstrated significant vegetative growth enhancement and yield increases across all crops, with the 30 t ha-1 application rate producing optimal outcomes. Predictive modeling exhibited remarkable accuracy: spinach analysis via SVM achieved R² = 0.94 and RMSE = 0.32 g; chard analysis through CART delivered R² = 0.92 and RMSE = 0.35 g; and cabbage assessment using CART yielded R² = 0.91 and RMSE = 0.38 g. This research substantiates biochar's effectiveness as an organic amendment while establishing a reliable framework for crop yield prediction using machine learning algorithms integrated with spectral data. These findings position biochar as a valuable component in sustainable agricultural systems, particularly for vegetable production in challenging high-altitude environments.
AB - Biochar, a carbon-rich material produced through oxygen-limited pyrolysis of organic biomass, demonstrates exceptional potential as a soil amendment due to its porous structure and stability. This research investigated the impact of guinea pig manure biochar on three vegetable species cultivated in high Andean conditions: spinach (Spinacia oleracea L.), cabbage (Brassica oleracea var.), and chard (Beta vulgaris var.). The study implemented four biochar application rates (0, 10, 20, and 30 t/ha) and measured comprehensive agronomic parameters including leaf count, leaf length, and fresh/dry biomass of both leaves and roots. Simultaneously, UAV-captured multispectral imagery provided spectral indices that were integrated with agronomic data into machine learning models: linear regression, support vector machines (SVM), and regression trees (CART). Results demonstrated significant vegetative growth enhancement and yield increases across all crops, with the 30 t ha-1 application rate producing optimal outcomes. Predictive modeling exhibited remarkable accuracy: spinach analysis via SVM achieved R² = 0.94 and RMSE = 0.32 g; chard analysis through CART delivered R² = 0.92 and RMSE = 0.35 g; and cabbage assessment using CART yielded R² = 0.91 and RMSE = 0.38 g. This research substantiates biochar's effectiveness as an organic amendment while establishing a reliable framework for crop yield prediction using machine learning algorithms integrated with spectral data. These findings position biochar as a valuable component in sustainable agricultural systems, particularly for vegetable production in challenging high-altitude environments.
KW - Biochar
KW - Machine learning
KW - Spectral indices
KW - Sustainable agriculture
KW - Vegetables
KW - Yield prediction
UR - https://www.scopus.com/pages/publications/105018013588
U2 - 10.1016/j.scienta.2025.114425
DO - 10.1016/j.scienta.2025.114425
M3 - Original Article
AN - SCOPUS:105018013588
SN - 0304-4238
VL - 352
JO - Scientia Horticulturae
JF - Scientia Horticulturae
M1 - 114425
ER -