Using remote sensing and modeling techniques to investigate the annual parasite incidence of malaria in Loreto, Peru

Aneela Mousam, Viviana Maggioni, Paul L. Delamater, Antonio M. Quispe

Producción científica: Artículo CientíficoArtículo originalrevisión exhaustiva

8 Citas (Scopus)

Resumen

Between 2001 and 2010 significant progress was made towards reducing the number of malaria cases in Peru; however, the country saw an increase between 2011 and 2015. This work attempts to uncover the associations among various climatic and environmental variables and the annual malaria parasite incidence in the Peruvian region of Loreto. A Multilevel Mixed-effects Poisson Regression model is employed, focusing on the 2009–2013 period, when trends in malaria incidence shifted from decreasing to increasing. The results indicate that variations in elevation (β = 0.78; 95% confidence interval (CI), 0.75–0.81), soil moisture (β = 0.0021; 95% CI, 0.0019–0.0022), rainfall (β = 0.59; 95% CI, 0.56–0.61), and normalized difference vegetation index (β = 2.13; 95% CI, 1.83–2.43) is associated with higher annual parasite incidence, whereas an increase in temperature (β = -0.0043; 95% CI, − 0.0044-− 0.0041) is associated with a lower annual parasite incidence. The results from this study are particularly useful for healthcare workers in Loreto and have the potential of being integrated within malaria elimination plans.

Idioma originalInglés estadounidense
Páginas (desde-hasta)423-438
-16
PublicaciónAdvances in Water Resources
Volumen108
DOI
EstadoIndizado - oct. 2017
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2016 Elsevier Ltd

Huella

Profundice en los temas de investigación de 'Using remote sensing and modeling techniques to investigate the annual parasite incidence of malaria in Loreto, Peru'. En conjunto forman una huella única.

Citar esto