Resumen
In Low and Middle-Income Countries (LMICs), efforts to eliminate the Tuberculosis (TB) epidemic are challenged by the persistent social inequalities in health, the limited number of local healthcare professionals, and the weak healthcare infrastructure found in resource-poor settings. The modern development of computer techniques has accelerated the TB diagnosis process. In this paper, we propose a novel method using Convolutional Neural Network(CNN) to deal with unbalanced, less-category X-ray images. Our method improves the accuracy for classifying multiple TB manifestations by a large margin. We explore the effectiveness and efficiency of shuffle sampling with cross-validation in training the network and find its outstanding effect in medical images classification. We achieve an 85.68% classification accuracy in a large TB image dataset, surpassing any state-of-art classification accuracy in this area. Our methods and results show a promising path for more accurate and faster TB diagnosis in LMICs healthcare facilities.
Idioma original | Inglés estadounidense |
---|---|
Título de la publicación alojada | 2017 IEEE International Conference on Image Processing, ICIP 2017 - Proceedings |
Editorial | IEEE Computer Society |
Páginas | 2314-2318 |
- | 5 |
ISBN (versión digital) | 9781509021758 |
DOI | |
Estado | Indizado - 2 jul. 2017 |
Publicado de forma externa | Sí |
Evento | 24th IEEE International Conference on Image Processing, ICIP 2017 - Beijing, China Duración: 17 set. 2017 → 20 set. 2017 |
Serie de la publicación
Nombre | Proceedings - International Conference on Image Processing, ICIP |
---|---|
Volumen | 2017-September |
ISSN (versión impresa) | 1522-4880 |
Conferencia
Conferencia | 24th IEEE International Conference on Image Processing, ICIP 2017 |
---|---|
País/Territorio | China |
Ciudad | Beijing |
Período | 17/09/17 → 20/09/17 |
Nota bibliográfica
Publisher Copyright:© 2017 IEEE.