Resumen
We prove the existence of a nontrivial singular trace τ defined on an ideal J closed with
respect to the logarithmic submajorization such that τ(Aρ(α)) = 0, where Aρ(α) ∶ L
2(0, 1) → L
2(0, 1),
[Aρ(α) f](θ) = ∫
1
0
ρ(αθ/x) f (x)dx , 0 < α ≤ 1. We also show that τ(Aρ(α)) = 0 for every τ nontrivial
singular trace on J . Finally, we give a recursion formula from which we can evaluate all the traces
Tr (Ar
ρ
(α)), r ∈ N, r ≥ 2.
| Título traducido de la contribución | Trazas de ciertos operadores integrales relacionado a la hipótesis de Riemann |
|---|---|
| Idioma original | Inglés estadounidense |
| - | 13 |
| Páginas (desde-hasta) | 24971 |
| - | 24983 |
| Publicación | AIMS Mathematics |
| Volumen | 8 |
| N.º | 10 |
| DOI | |
| Estado | Publicado - 2023 |
Nota bibliográfica
-Palabras clave
- SINGULAR TRACE
- SPECTRAL TRACE
- modified Fredholm determinant
- Riemann hypothesis