Tjurina number of a local complete intersection curve

Valmecir Antonio dos Santos Bayer, Edison Marcavillaca Niño de Guzmán, Abramo Hefez, Marcelo Escudeiro Hernandes

Producción científica: Artículo CientíficoArtículo originalrevisión exhaustiva

Resumen

In contrast to the Milnor number, there was no known formula relating the Tjurina number of a reducible curve to the Tjurina numbers of its components. In this work we exhibit such a formula relating Tjurina number of a complete intersection algebroid (or analytic) curve over an algebraically closed field of characteristic zero (or over (Formula presented.)) to the Tjurina numbers of its components, involving the intersection indices among the components and numerical analytic invariants extracted from modules of Kähler differentials on unions of branches of the curve.

Idioma originalInglés estadounidense
PublicaciónCommunications in Algebra
DOI
EstadoAceptado - 2024

Nota bibliográfica

Publisher Copyright:
© 2024 Taylor & Francis Group, LLC.

Huella

Profundice en los temas de investigación de 'Tjurina number of a local complete intersection curve'. En conjunto forman una huella única.

Citar esto