TY - JOUR
T1 - The second knee in the cosmic ray spectrum observed with the surface detector of the Pierre Auger Observatory
AU - Pierre Auger Collaboration
AU - Orquera, Gabriel Brichetto
AU - Abdul Halim, A.
AU - Abreu, P.
AU - Aglietta, M.
AU - Allekotte, I.
AU - Almeida Cheminant, K.
AU - Almela, A.
AU - Aloisio, R.
AU - Alvarez-Muñiz, J.
AU - Ammerman Yebra, J.
AU - Anastasi, G. A.
AU - Anchordoqui, L.
AU - Andrada, B.
AU - Andringa, S.
AU - Aramo, C.
AU - Araújo Ferreira, P. R.
AU - Arnone, E.
AU - Arteaga Velázquez, J. C.
AU - Asorey, H.
AU - Assis, P.
AU - Avila, G.
AU - Avocone, E.
AU - Badescu, A. M.
AU - Bakalova, A.
AU - Balaceanu, A.
AU - Barbato, F.
AU - Bartz Mocellin, A.
AU - Bellido, J. A.
AU - Berat, C.
AU - Bertaina, M. E.
AU - Bhatta, G.
AU - Bianciotto, M.
AU - Biermann, P. L.
AU - Binet, V.
AU - Bismark, K.
AU - Bister, T.
AU - Biteau, J.
AU - Blazek, J.
AU - Bleve, C.
AU - Blümer, J.
AU - Boháčová, M.
AU - Boncioli, D.
AU - Bonifazi, C.
AU - Bonneau Arbeletche, L.
AU - Borodai, N.
AU - Brack, J.
AU - Brichetto Orchera, P. G.
AU - Briechle, F. L.
AU - Bueno, A.
AU - Ventura, C.
N1 - Publisher Copyright:
© Copyright owned by the author(s) under the terms of the Creative Commons.
PY - 2024/9/27
Y1 - 2024/9/27
N2 - The determination of the energy spectrum features with low systematic uncertainty is crucial for interpreting the nature of cosmic rays. In this study, we conducted a measurement of the energy spectrum at the Pierre Auger Observatory using a surface detector with a calorimetric energy scale indirectly set by a fluorescence detector. The surface detector consists of an array of water-Cherenkov detectors that extends over 3000 km2 with 1500 m spacing. Additionally, two nested arrays of the same kind with 750 m and 433 m spacing were utilized to lower the energy threshold of the measurements. This contribution presents, for the first time, the spectrum measured with the 433 m array, which reduces the energy threshold down to 63 PeV, nearly half the energy at which we previously published a steepening using the 750 m array. Our measurements include a characterization of the spectral features of the flux steepening around 230 PeV, known as the second-knee. The study benefits from a nearly 100% duty cycle and geometrical exposure. Notably, this is the first simultaneous measurement of the second knee energy and spectral indexes before and after the break, using a surface detector with an energy scale predominantly independent of air shower simulations and assumptions regarding hadronic interaction models.
AB - The determination of the energy spectrum features with low systematic uncertainty is crucial for interpreting the nature of cosmic rays. In this study, we conducted a measurement of the energy spectrum at the Pierre Auger Observatory using a surface detector with a calorimetric energy scale indirectly set by a fluorescence detector. The surface detector consists of an array of water-Cherenkov detectors that extends over 3000 km2 with 1500 m spacing. Additionally, two nested arrays of the same kind with 750 m and 433 m spacing were utilized to lower the energy threshold of the measurements. This contribution presents, for the first time, the spectrum measured with the 433 m array, which reduces the energy threshold down to 63 PeV, nearly half the energy at which we previously published a steepening using the 750 m array. Our measurements include a characterization of the spectral features of the flux steepening around 230 PeV, known as the second-knee. The study benefits from a nearly 100% duty cycle and geometrical exposure. Notably, this is the first simultaneous measurement of the second knee energy and spectral indexes before and after the break, using a surface detector with an energy scale predominantly independent of air shower simulations and assumptions regarding hadronic interaction models.
UR - http://www.scopus.com/inward/record.url?scp=85212246504&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85212246504
SN - 1824-8039
VL - 444
JO - Proceedings of Science
JF - Proceedings of Science
M1 - 398
T2 - 38th International Cosmic Ray Conference, ICRC 2023
Y2 - 26 July 2023 through 3 August 2023
ER -