Resumen
A first step in the process of automating weed removal in precision agriculture is the semantic segmentation of crops, weeds and soil. Deep learning techniques based on convolutional neural networks are successfully applied today and one of the most popular network architectures in semantic segmentation problems is U-Net. In this article, the variants in the U-Net architecture were evaluated based on the aggregation of residual and recurring blocks to improve their performance. For training and testing, a set of data available on the Internet was used, consisting of 60 multispectral images with unbalanced pixels, so techniques were applied to increase and balance the data. Experimental results show a slight increase in quality metrics compared to the classic U-Net architecture.
Idioma original | Inglés estadounidense |
---|---|
Título de la publicación alojada | Applied Technologies - 1st International Conference, ICAT 2019, Proceedings |
Editores | Miguel Botto-Tobar, Marcelo Zambrano Vizuete, Pablo Torres-Carrión, Sergio Montes León, Guillermo Pizarro Vásquez, Benjamin Durakovic |
Editorial | Springer |
Páginas | 473-485 |
- | 13 |
ISBN (versión impresa) | 9783030425197 |
DOI | |
Estado | Indizado - 2020 |
Publicado de forma externa | Sí |
Evento | 1st International Conference on Applied Technologies, ICAT 2019 - Quito, Ecuador Duración: 3 dic. 2019 → 5 dic. 2019 |
Serie de la publicación
Nombre | Communications in Computer and Information Science |
---|---|
Volumen | 1194 CCIS |
ISSN (versión impresa) | 1865-0929 |
ISSN (versión digital) | 1865-0937 |
Conferencia
Conferencia | 1st International Conference on Applied Technologies, ICAT 2019 |
---|---|
País/Territorio | Ecuador |
Ciudad | Quito |
Período | 3/12/19 → 5/12/19 |
Nota bibliográfica
Publisher Copyright:© 2020, Springer Nature Switzerland AG.