Semantic Segmentation of Weeds and Crops in Multispectral Images by Using a Convolutional Neural Networks Based on U-Net

Miguel Ángel Chicchón Apaza, Héctor Manuel Bedón Monzón, Ramón Pablo Alcarria Garrido

Producción científica: Libro o Capítulo del libro Contribución a la conferenciarevisión exhaustiva

6 Citas (Scopus)

Resumen

A first step in the process of automating weed removal in precision agriculture is the semantic segmentation of crops, weeds and soil. Deep learning techniques based on convolutional neural networks are successfully applied today and one of the most popular network architectures in semantic segmentation problems is U-Net. In this article, the variants in the U-Net architecture were evaluated based on the aggregation of residual and recurring blocks to improve their performance. For training and testing, a set of data available on the Internet was used, consisting of 60 multispectral images with unbalanced pixels, so techniques were applied to increase and balance the data. Experimental results show a slight increase in quality metrics compared to the classic U-Net architecture.

Idioma originalInglés estadounidense
Título de la publicación alojadaApplied Technologies - 1st International Conference, ICAT 2019, Proceedings
EditoresMiguel Botto-Tobar, Marcelo Zambrano Vizuete, Pablo Torres-Carrión, Sergio Montes León, Guillermo Pizarro Vásquez, Benjamin Durakovic
EditorialSpringer
Páginas473-485
-13
ISBN (versión impresa)9783030425197
DOI
EstadoIndizado - 2020
Publicado de forma externa
Evento1st International Conference on Applied Technologies, ICAT 2019 - Quito, Ecuador
Duración: 3 dic. 20195 dic. 2019

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1194 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia1st International Conference on Applied Technologies, ICAT 2019
País/TerritorioEcuador
CiudadQuito
Período3/12/195/12/19

Nota bibliográfica

Publisher Copyright:
© 2020, Springer Nature Switzerland AG.

Huella

Profundice en los temas de investigación de 'Semantic Segmentation of Weeds and Crops in Multispectral Images by Using a Convolutional Neural Networks Based on U-Net'. En conjunto forman una huella única.

Citar esto