Resumen
Making raw material purchase forecasts for companies is very difficult and, if inadequately controlled, can affect the company's decision making and profitability. Currently, there are optimized systems or mathematical models to try to predict the demands and solve this problem. In this study, a raw material purchase prediction model is proposed that uses the Elastic Net algorithm to analyze historical sales and inventory data. The model is used to improve prediction accuracy, allowing SMEs to optimize inventories, reduce costs and improve efficiency. Experimental results indicate that the proposed model obtains better results in the MAE, RMSE and R2 indicators.
Idioma original | Inglés estadounidense |
---|---|
Título de la publicación alojada | ARAEML 2024 - 2024 International Conference on Advanced Robotics, Automation Engineering and Machine Learning |
Subtítulo de la publicación alojada | Conference Proceeding |
Editorial | Association for Computing Machinery |
Páginas | 6-11 |
- | 6 |
ISBN (versión digital) | 9798400717116 |
DOI | |
Estado | Indizado - 28 jun. 2024 |
Publicado de forma externa | Sí |
Evento | 2024 International Conference on Advanced Robotics, Automation Engineering and Machine Learning, ARAEML 2024 - Hangzhou, China Duración: 28 jun. 2024 → 30 jun. 2024 |
Serie de la publicación
Nombre | ACM International Conference Proceeding Series |
---|
Conferencia
Conferencia | 2024 International Conference on Advanced Robotics, Automation Engineering and Machine Learning, ARAEML 2024 |
---|---|
País/Territorio | China |
Ciudad | Hangzhou |
Período | 28/06/24 → 30/06/24 |
Nota bibliográfica
Publisher Copyright:© 2024 ACM.