Predictive model based on machine learning for raw material purchasing management in the retail sector.

Julio C. Antunez, Johnny D. Salazar, Pedro S. Castañeda

Producción científica: Libro o Capítulo del libro Contribución a la conferenciarevisión exhaustiva

Resumen

Making raw material purchase forecasts for companies is very difficult and, if inadequately controlled, can affect the company's decision making and profitability. Currently, there are optimized systems or mathematical models to try to predict the demands and solve this problem. In this study, a raw material purchase prediction model is proposed that uses the Elastic Net algorithm to analyze historical sales and inventory data. The model is used to improve prediction accuracy, allowing SMEs to optimize inventories, reduce costs and improve efficiency. Experimental results indicate that the proposed model obtains better results in the MAE, RMSE and R2 indicators.

Idioma originalInglés estadounidense
Título de la publicación alojadaARAEML 2024 - 2024 International Conference on Advanced Robotics, Automation Engineering and Machine Learning
Subtítulo de la publicación alojadaConference Proceeding
EditorialAssociation for Computing Machinery
Páginas6-11
-6
ISBN (versión digital)9798400717116
DOI
EstadoIndizado - 28 jun. 2024
Publicado de forma externa
Evento2024 International Conference on Advanced Robotics, Automation Engineering and Machine Learning, ARAEML 2024 - Hangzhou, China
Duración: 28 jun. 202430 jun. 2024

Serie de la publicación

NombreACM International Conference Proceeding Series

Conferencia

Conferencia2024 International Conference on Advanced Robotics, Automation Engineering and Machine Learning, ARAEML 2024
País/TerritorioChina
CiudadHangzhou
Período28/06/2430/06/24

Nota bibliográfica

Publisher Copyright:
© 2024 ACM.

Huella

Profundice en los temas de investigación de 'Predictive model based on machine learning for raw material purchasing management in the retail sector.'. En conjunto forman una huella única.

Citar esto