Resumen
Robberies and thefts in the districts of Los Olivos, San Martin de Porres and Comas in Lima, Peru are a constant problem. The scarce police presence on the streets makes these areas ripe for crime. This project proposes analyze crime rates across the public authorities to take measures that might reduce the crime rate with the development of a Machine Learning model, through the use of Random Forest (RF) and a dataset with information from districts in similar situations to those raised in the project. The proposed solution includes a web application interface for data input and analysis, that will be used by municipal entities and everyone. Performance metrics such as Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were included, with results showing MAEs of 29.194, 45.219, and 75.572 and RMSEs of 39.651, 58.199, and 93.110 from other districts with the same condition. The study concludes with a refinement of machine learning methodologies for crime prediction and emphasizes the potential for citizen engagement in crime prevention.
Idioma original | Inglés estadounidense |
---|---|
Título de la publicación alojada | Proceedings of the 20th International Conference on Web Information Systems and Technologies, WEBIST 2024 |
Editores | Francisco Garcia Penalvo, Karl Aberer, Massimo Marchiori |
Editorial | Science and Technology Publications, Lda |
Páginas | 191-198 |
- | 8 |
ISBN (versión digital) | 9789897587184 |
DOI | |
Estado | Indizado - 2024 |
Publicado de forma externa | Sí |
Evento | 20th International Conference on Web Information Systems and Technologies, WEBIST 2024 - Porto, Portugal Duración: 17 nov. 2024 → 19 nov. 2024 |
Serie de la publicación
Nombre | International Conference on Web Information Systems and Technologies, WEBIST - Proceedings |
---|---|
ISSN (versión impresa) | 2184-3252 |
Conferencia
Conferencia | 20th International Conference on Web Information Systems and Technologies, WEBIST 2024 |
---|---|
País/Territorio | Portugal |
Ciudad | Porto |
Período | 17/11/24 → 19/11/24 |
Nota bibliográfica
Publisher Copyright:Copyright © 2024 by SCITEPRESS.