Prediction Web Application Based on a Machine Learning Model to Reduce Robberies and Thefts Rate in Los Olivos, San Martín de Porres and Comas

Mederos Sanchez, Luis Estefano, Zelada Padilla, Carlos Antonio, Pedro S. Castañeda

Producción científica: Libro o Capítulo del libro Contribución a la conferenciarevisión exhaustiva

Resumen

Robberies and thefts in the districts of Los Olivos, San Martin de Porres and Comas in Lima, Peru are a constant problem. The scarce police presence on the streets makes these areas ripe for crime. This project proposes analyze crime rates across the public authorities to take measures that might reduce the crime rate with the development of a Machine Learning model, through the use of Random Forest (RF) and a dataset with information from districts in similar situations to those raised in the project. The proposed solution includes a web application interface for data input and analysis, that will be used by municipal entities and everyone. Performance metrics such as Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were included, with results showing MAEs of 29.194, 45.219, and 75.572 and RMSEs of 39.651, 58.199, and 93.110 from other districts with the same condition. The study concludes with a refinement of machine learning methodologies for crime prediction and emphasizes the potential for citizen engagement in crime prevention.

Idioma originalInglés estadounidense
Título de la publicación alojadaProceedings of the 20th International Conference on Web Information Systems and Technologies, WEBIST 2024
EditoresFrancisco Garcia Penalvo, Karl Aberer, Massimo Marchiori
EditorialScience and Technology Publications, Lda
Páginas191-198
-8
ISBN (versión digital)9789897587184
DOI
EstadoIndizado - 2024
Publicado de forma externa
Evento20th International Conference on Web Information Systems and Technologies, WEBIST 2024 - Porto, Portugal
Duración: 17 nov. 202419 nov. 2024

Serie de la publicación

NombreInternational Conference on Web Information Systems and Technologies, WEBIST - Proceedings
ISSN (versión impresa)2184-3252

Conferencia

Conferencia20th International Conference on Web Information Systems and Technologies, WEBIST 2024
País/TerritorioPortugal
CiudadPorto
Período17/11/2419/11/24

Nota bibliográfica

Publisher Copyright:
Copyright © 2024 by SCITEPRESS.

Huella

Profundice en los temas de investigación de 'Prediction Web Application Based on a Machine Learning Model to Reduce Robberies and Thefts Rate in Los Olivos, San Martín de Porres and Comas'. En conjunto forman una huella única.

Citar esto