Prediction of Soil Saturated Electrical Conductivity by Statistical Learning

Carlos Mestanza, Miguel Chicchon, Pedro Gutiérrez, Lorenzo Hurtado, Cesar Beltrán

Producción científica: Libro o Capítulo del libro Contribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

The diagnosis of saline soils requires the analysis of electrical conductivity in saturated soil paste extract. Its analysis is expensive, tedious, and highly time-consuming, therefore, commercial laboratories analyze the aqueous extract in a 1:1 ratio and then transform the value into saturation extract using equations. The research aimed to calibrate a statistical learning method to predict the electrical conductivity adapted to Peruvian conditions. For this, we apply different models from highly interpretable to black-box, such as multiple linear model, generalized additive models, Bayesian additive regression tree, extreme gradient boosting trees, and neural networks. In general, the models with beast predictive power were neural network and extreme gradient boosting trees, and the beast interpretable was Bayesian additive regression trees. The generalized additive models present the best balance between prediction power and interpretability with low application on extremely salty soils.

Idioma originalInglés estadounidense
Título de la publicación alojadaInformation Management and Big Data - 8th Annual International Conference, SIMBig 2021, Proceedings
EditoresJuan Antonio Lossio-Ventura, Jorge Valverde-Rebaza, Eduardo Díaz, Denisse Muñante, Carlos Gavidia-Calderon, Alan Demétrius Valejo, Hugo Alatrista-Salas
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas397-412
-16
ISBN (versión impresa)9783031044465
DOI
EstadoIndizado - 2022
Publicado de forma externa
Evento8th Annual International Conference on Information Management and Big Data, SIMBig 2021 - Virtual, Online
Duración: 1 dic. 20213 dic. 2021

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1577 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia8th Annual International Conference on Information Management and Big Data, SIMBig 2021
CiudadVirtual, Online
Período1/12/213/12/21

Nota bibliográfica

Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Huella

Profundice en los temas de investigación de 'Prediction of Soil Saturated Electrical Conductivity by Statistical Learning'. En conjunto forman una huella única.

Citar esto