Resumen
The diagnosis of saline soils requires the analysis of electrical conductivity in saturated soil paste extract. Its analysis is expensive, tedious, and highly time-consuming, therefore, commercial laboratories analyze the aqueous extract in a 1:1 ratio and then transform the value into saturation extract using equations. The research aimed to calibrate a statistical learning method to predict the electrical conductivity adapted to Peruvian conditions. For this, we apply different models from highly interpretable to black-box, such as multiple linear model, generalized additive models, Bayesian additive regression tree, extreme gradient boosting trees, and neural networks. In general, the models with beast predictive power were neural network and extreme gradient boosting trees, and the beast interpretable was Bayesian additive regression trees. The generalized additive models present the best balance between prediction power and interpretability with low application on extremely salty soils.
Idioma original | Inglés estadounidense |
---|---|
Título de la publicación alojada | Information Management and Big Data - 8th Annual International Conference, SIMBig 2021, Proceedings |
Editores | Juan Antonio Lossio-Ventura, Jorge Valverde-Rebaza, Eduardo Díaz, Denisse Muñante, Carlos Gavidia-Calderon, Alan Demétrius Valejo, Hugo Alatrista-Salas |
Editorial | Springer Science and Business Media Deutschland GmbH |
Páginas | 397-412 |
- | 16 |
ISBN (versión impresa) | 9783031044465 |
DOI | |
Estado | Indizado - 2022 |
Publicado de forma externa | Sí |
Evento | 8th Annual International Conference on Information Management and Big Data, SIMBig 2021 - Virtual, Online Duración: 1 dic. 2021 → 3 dic. 2021 |
Serie de la publicación
Nombre | Communications in Computer and Information Science |
---|---|
Volumen | 1577 CCIS |
ISSN (versión impresa) | 1865-0929 |
ISSN (versión digital) | 1865-0937 |
Conferencia
Conferencia | 8th Annual International Conference on Information Management and Big Data, SIMBig 2021 |
---|---|
Ciudad | Virtual, Online |
Período | 1/12/21 → 3/12/21 |
Nota bibliográfica
Publisher Copyright:© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.