Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers

Edward Jordy Ticlavilcainche, Maria Isabel Moreno-Lozano, Pedro Castañeda, Sandra Wong-Durand, Alejandra Oñate-Andino

Producción científica: Artículo CientíficoArtículo originalrevisión exhaustiva

Resumen

This article introduces an innovative mobile solution for Pterygium detection, an eye disease, using a classification model based on the convolutional neural network (CNN) architecture ResNext50 in images of the anterior segment of the eye. Four models (ResNext50, ResNet50, MobileNet v2, and DenseNet201) were used for the analysis, with ResNext50 standing out for its high accuracy and diagnostic efficiency. The research, focused on applications for ophthalmological medical centers in Lima, Peru, explains the process of development and integration of the ResNext50 model into a mobile application. The results indicate the high effectiveness of the system, highlighting its high precision, recall, and specificity, which exceed 85%, thus showing its potential as an advanced diagnostic tool in ophthalmology. This system represents a significant tool in ophthalmology, especially for areas with limited access to specialists, offering a rapid and reliable diagnosis of Pterygium. The study also addresses the technical challenges and clinical implications of implementing this technology in a real-world context.

Idioma originalInglés estadounidense
Páginas (desde-hasta)115-138
-24
PublicaciónInternational journal of online and biomedical engineering
Volumen20
N.º8
DOI
EstadoIndizado - 21 may. 2024
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2024 by the authors of this article.

Huella

Profundice en los temas de investigación de 'Mobile Application Based on Convolutional Neural Networks for Pterygium Detection in Anterior Segment Eye Images at Ophthalmological Medical Centers'. En conjunto forman una huella única.

Citar esto