Mass Composition from 3 EeV to 100 EeV using the Depth of the Maximum of Air-Shower Profiles Estimated with Deep Learning using Surface Detector Data of the Pierre Auger Observatory

Pierre Auger Collaboration

Producción científica: Artículo CientíficoArtículo de la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

We present a new analysis for estimating the depth of the maximum of air-shower profiles, Xmax, to investigate the evolution of the ultra-high-energy cosmic ray mass composition from 3 to 100 EeV. We use a recently developed deep-learning-based technique for the reconstruction of Xmax from the data of the surface detector of the Pierre Auger Observatory. To avoid systematic uncertainties arising from hadronic interaction models in the simulation of surface detector data, we calibrate the new reconstruction technique with observations of the fluorescence detector. Using the novel analysis, we have a 10-fold increase of statistics at E > 5 EeV with respect to fluorescence detector data. We are able, for the first time, to study the evolution of the mean and standard deviation of the Xmax distributions up to 100 EeV. We find an excellent agreement with fluorescence observations and confirm the increase of the mean logarithmic mass hln(A)i and a decrease of the Xmax fluctuations with energy. The Xmax measurement at the highest — so far inaccessible — energies is consistent with a pure mass composition and a mean logarithmic mass of around ∼ 3 (estimated using the Sibyll 2.3d and the EPOS-LHC hadronic interaction models).

Idioma originalInglés estadounidense
-278
PublicaciónProceedings of Science
Volumen444
EstadoIndizado - 27 set. 2024
Publicado de forma externa
Evento38th International Cosmic Ray Conference, ICRC 2023 - Nagoya, Japón
Duración: 26 jul. 20233 ago. 2023

Nota bibliográfica

Publisher Copyright:
© Copyright owned by the author(s) under the terms of the Creative Commons.

Huella

Profundice en los temas de investigación de 'Mass Composition from 3 EeV to 100 EeV using the Depth of the Maximum of Air-Shower Profiles Estimated with Deep Learning using Surface Detector Data of the Pierre Auger Observatory'. En conjunto forman una huella única.

Citar esto