Machine Learning-Based Web Application for ADHD Detection in Children

Diego Oscar Alexander Porras, Gerson Antonio Mejia, Pedro Segundo Castañeda

Producción científica: Libro o Capítulo del libro Contribución a la conferenciarevisión exhaustiva

Resumen

Attention deficit hyperactivity disorder (ADHD) represents a medical condition characterized by the presence of inattention, hyperactivity, and impulsivity, which affects the academic development of students globally. In Peru, it affects a proportion of the pediatric population ranging from 2% to 12%, with a prevalence of 12.1% in South Lima, particularly in public schools. This research presents an online application with machine learning to improve the detection of ADHD in elementary school children. Several machine learning algorithms were reviewed and Random Forest was selected as the best-performing model with an accuracy of 96.08%. The model uses 27 selected variables, optimizing data collection and training. The child answers the questionnaire within the app and psychologists can access the app to visualize the results, aiding in the early detection of ADHD. The experiment involved 189 participants, resulting in a high accuracy of the Random Forest model. This innovative solution can have a significant impact on the early identification of ADHD, benefiting children's health and educational process.

Idioma originalInglés estadounidense
Título de la publicación alojada8th International Conference on Innovation in Artificial Intelligence, ICIAI 2024
EditorialAssociation for Computing Machinery
Páginas92-98
-7
ISBN (versión digital)9798400709302
DOI
EstadoIndizado - 16 mar. 2024
Publicado de forma externa
Evento8th International Conference on Innovation in Artificial Intelligence, ICIAI 2024 - Tokyo, Japón
Duración: 16 mar. 202418 mar. 2024

Serie de la publicación

NombreACM International Conference Proceeding Series

Conferencia

Conferencia8th International Conference on Innovation in Artificial Intelligence, ICIAI 2024
País/TerritorioJapón
CiudadTokyo
Período16/03/2418/03/24

Nota bibliográfica

Publisher Copyright:
© 2024 ACM.

Huella

Profundice en los temas de investigación de 'Machine Learning-Based Web Application for ADHD Detection in Children'. En conjunto forman una huella única.

Citar esto