TY - JOUR
T1 - Investigating the UHECR characteristics from cosmogenic neutrino limits with the measurements of the Pierre Auger Observatory
AU - Pierre Auger Collaboration
AU - Petrucci, Camilla
AU - Abdul Halim, A.
AU - Abreu, P.
AU - Aglietta, M.
AU - Allekotte, I.
AU - Almeida Cheminant, K.
AU - Almela, A.
AU - Aloisio, R.
AU - Alvarez-Muñiz, J.
AU - Ammerman Yebra, J.
AU - Anastasi, G. A.
AU - Anchordoqui, L.
AU - Andrada, B.
AU - Andringa, S.
AU - Aramo, C.
AU - Araújo Ferreira, P. R.
AU - Arnone, E.
AU - Arteaga Velázquez, J. C.
AU - Asorey, H.
AU - Assis, P.
AU - Avila, G.
AU - Avocone, E.
AU - Badescu, A. M.
AU - Bakalova, A.
AU - Balaceanu, A.
AU - Barbato, F.
AU - Bartz Mocellin, A.
AU - Bellido, J. A.
AU - Berat, C.
AU - Bertaina, M. E.
AU - Bhatta, G.
AU - Bianciotto, M.
AU - Biermann, P. L.
AU - Binet, V.
AU - Bismark, K.
AU - Bister, T.
AU - Biteau, J.
AU - Blazek, J.
AU - Bleve, C.
AU - Blümer, J.
AU - Bohácová, M.
AU - Boncioli, D.
AU - Bonifazi, C.
AU - Bonneau Arbeletche, L.
AU - Borodai, N.
AU - Brack, J.
AU - Brichetto Orchera, P. G.
AU - Briechle, F. L.
AU - Bueno, A.
AU - Ventura, C.
N1 - Publisher Copyright:
© Copyright owned by the author(s) under the terms of the Creative Commons.
PY - 2024/9/27
Y1 - 2024/9/27
N2 - Cosmogenic neutrinos are expected to originate in the extragalactic propagation of ultra-high-energy cosmic rays (UHECRs), as a result of their interactions with background photons. Due to these reactions, the visible Universe in UHECRs is more limited than in neutrinos, which instead could reach us without interacting after traveling cosmological distances. In this contribution, we exploit a multimessenger approach by computing the expected energy spectrum and mass composition of UHECRs at Earth corresponding to combinations of spectral parameters and mass composition at their sources, as well as parameters related to the UHECR source distribution, and by determining, at the same time, the associated cosmogenic neutrino fluxes. By comparing the expected UHECR observables to the energy spectrum and mass composition measured at the Pierre Auger Observatory above 1017.8 eV and the expected neutrino fluxes to the most updated neutrino limits, we show the dependence of the neutrino fluxes on the characteristics of the the properties of the potential sources of UHECRs, such as their cosmological evolution and maximum redshift. In addition, the fraction of protons compatible with the data is also investigated in terms of expected neutrino fluxes.
AB - Cosmogenic neutrinos are expected to originate in the extragalactic propagation of ultra-high-energy cosmic rays (UHECRs), as a result of their interactions with background photons. Due to these reactions, the visible Universe in UHECRs is more limited than in neutrinos, which instead could reach us without interacting after traveling cosmological distances. In this contribution, we exploit a multimessenger approach by computing the expected energy spectrum and mass composition of UHECRs at Earth corresponding to combinations of spectral parameters and mass composition at their sources, as well as parameters related to the UHECR source distribution, and by determining, at the same time, the associated cosmogenic neutrino fluxes. By comparing the expected UHECR observables to the energy spectrum and mass composition measured at the Pierre Auger Observatory above 1017.8 eV and the expected neutrino fluxes to the most updated neutrino limits, we show the dependence of the neutrino fluxes on the characteristics of the the properties of the potential sources of UHECRs, such as their cosmological evolution and maximum redshift. In addition, the fraction of protons compatible with the data is also investigated in terms of expected neutrino fluxes.
UR - http://www.scopus.com/inward/record.url?scp=85212250025&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85212250025
SN - 1824-8039
VL - 444
JO - Proceedings of Science
JF - Proceedings of Science
M1 - 1520
T2 - 38th International Cosmic Ray Conference, ICRC 2023
Y2 - 26 July 2023 through 3 August 2023
ER -