Investigating the UHECR characteristics from cosmogenic neutrino limits with the measurements of the Pierre Auger Observatory

Pierre Auger Collaboration

Producción científica: Artículo CientíficoArtículo de la conferenciarevisión exhaustiva

Resumen

Cosmogenic neutrinos are expected to originate in the extragalactic propagation of ultra-high-energy cosmic rays (UHECRs), as a result of their interactions with background photons. Due to these reactions, the visible Universe in UHECRs is more limited than in neutrinos, which instead could reach us without interacting after traveling cosmological distances. In this contribution, we exploit a multimessenger approach by computing the expected energy spectrum and mass composition of UHECRs at Earth corresponding to combinations of spectral parameters and mass composition at their sources, as well as parameters related to the UHECR source distribution, and by determining, at the same time, the associated cosmogenic neutrino fluxes. By comparing the expected UHECR observables to the energy spectrum and mass composition measured at the Pierre Auger Observatory above 1017.8 eV and the expected neutrino fluxes to the most updated neutrino limits, we show the dependence of the neutrino fluxes on the characteristics of the the properties of the potential sources of UHECRs, such as their cosmological evolution and maximum redshift. In addition, the fraction of protons compatible with the data is also investigated in terms of expected neutrino fluxes.

Idioma originalInglés estadounidense
-1520
PublicaciónProceedings of Science
Volumen444
EstadoIndizado - 27 set. 2024
Publicado de forma externa
Evento38th International Cosmic Ray Conference, ICRC 2023 - Nagoya, Japón
Duración: 26 jul. 20233 ago. 2023

Nota bibliográfica

Publisher Copyright:
© Copyright owned by the author(s) under the terms of the Creative Commons.

Huella

Profundice en los temas de investigación de 'Investigating the UHECR characteristics from cosmogenic neutrino limits with the measurements of the Pierre Auger Observatory'. En conjunto forman una huella única.

Citar esto