Graphene and carbon structures and nanomaterials for energy storage

Omar Dheyauldeen Salahdin, Hamidreza Sayadi, Reena Solanki, Rosario Mireya Romero Parra, Mohaimen Al-Thamir, Abduladheem Turki Jalil, Samar Emad Izzat, Ali Thaeer Hammid, Luis Andres Barboza Arenas, Ehsan Kianfar

Producción científica: Artículo CientíficoArtículo originalrevisión exhaustiva

44 Citas (Scopus)


There is enormous interest in the use of graphene-based materials for energy storage. This article discusses the progress that has been accomplished in the development of chemical, electrochemical, and electrical energy storage systems using graphene. We summarize the theoretical and experimental work on graphene-based hydrogen storage systems, lithium batteries, and supercapacitors. Graphene could also be a two-dimensional (2D) sheet of carbon atoms in a very hexagonal (honeycomb) configuration. The carbon atoms in graphene are bonded with the SP2 hybrid. Graphene is the most recent member of the multidimensional graphite carbon family of materials. This family includes fullerene as zero-dimensional (0D) nanomaterials, carbon nanotubes as one-dimensional (1D) nanomaterials, and graphite as a three-dimensional (3D) material. The term graphene was first coined in 1986 to form the word graphite and a suffix (s) per polycyclic aromatic hydrocarbons. Additionally, to monolayer and bilayer graphene, graphene layers from 3 to 10 layers are called few-layer graphene and between 10 and 30 layers are called multiplayer graphene, thick graphene, or nanocrystals. Graphene is typically expected to contain only one layer, but there is considerable interest in researching bilayer and low-layer graphene. There are several methods for producing graphene, each with its own advantages and disadvantages. Graphene-based materials have great potential to be employed in supercapacitors due to their unique two-dimensional structure and inherent physical properties like excellent electrical conductivity and large area. This text summarizes recent developments within the sector of supercapacitors, including double-layer capacitors and quasi-capacitors. The pros and cons of using them in supercapacitors are discussed. Compared to traditional electrodes, graphene-based materials show some new properties and mechanisms within the method of energy storage and release. During this paper, we briefly describe carbon structures, particularly graphene, and also the history of graphene discovery, and briefly describe the synthesis methods, properties, characterization methods, and applications of graphene.

Idioma originalInglés estadounidense
PublicaciónApplied Physics A: Materials Science and Processing
EstadoIndizado - ago. 2022

Nota bibliográfica

Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.


Profundice en los temas de investigación de 'Graphene and carbon structures and nanomaterials for energy storage'. En conjunto forman una huella única.

Citar esto