Follow-up Search for UHE Photons from Gravitational Wave Sources with the Pierre Auger Observatory

the Pierre Auger Collaboration

Producción científica: Artículo CientíficoArtículo de la conferenciarevisión exhaustiva

Resumen

Multimessenger astronomy has become increasingly important during the past decade. Some astronomical objects have already been successfully observed in the light of multiple messenger signals, allowing for a much deeper understanding of their physical properties. The Pierre Auger Observatory has taken part in multimessenger astronomy with an exhaustive exploration of the ultra-high-energy sky. In this contribution, for the first time, a search for UHE photons from the sources of gravitational waves is presented. Interactions with the cosmic background radiation fields are expected to attenuate any possible flux of ultra-high-energy photons from distant sources and a non-negligible background of air shower events with hadronic origin makes an unambiguous identification of primary photons a challenging task. In the analysis presented here, a selection strategy is applied to both GW sources and air shower events aiming to provide maximum sensitivity to a possible photon signal. At the same time, a window is kept open for hypothetical new-physics processes, which might allow for much larger interaction lengths of photons in the extragalactic medium. Preliminary results on the UHE photon fluence from a selection of GW sources, including the binary neutron star merger GW170817 are presented.

Idioma originalInglés estadounidense
-973
PublicaciónProceedings of Science
Volumen395
EstadoIndizado - 18 mar. 2022
Publicado de forma externa
Evento37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Alemania
Duración: 12 jul. 202123 jul. 2021

Nota bibliográfica

Publisher Copyright:
© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)

Huella

Profundice en los temas de investigación de 'Follow-up Search for UHE Photons from Gravitational Wave Sources with the Pierre Auger Observatory'. En conjunto forman una huella única.

Citar esto