Enhanced Sonophotocatalytic Degradation of Acid Red 14 Using Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) Based on Metal-Organic Framework

Sulieman Ibraheem Shelash Al-Hawary, Razzagh Rahimpoor, Abdolrasoul Rahmani, Rosario Mireya Romero-Parra, Andrés Alexis Ramírez-Coronel, Firas Rahi Alhachami, Nezamaddin Mengelizadeh, Davoud Balarak

Producción científica: Artículo CientíficoArtículo originalrevisión exhaustiva

6 Citas (Scopus)


Here, the magnetic Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) with a new core-shell structure was synthesized, and its sonophotocatalytic properties were evaluated for acid red 14 (AR14) degradation. Particle characterizations were determined by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and vibrating-sample magnetometer (VSM), and the analysis results offered an excellent synthesis of mesoporous particles. Fe3O4@SiO2/PAEDTC@MIL-101 (Fe)/UV/US showed high degradation kinetics rate (0.0327 min−1) compared to sonocatalytic processes (0.0181 min−1), photocatalytic (0218 min−1), sonolysis (0.008 min−1), and photolysis (0.005 min−1). Maximum removal efficiencies of AR14 (100%) and total organic carbon (69.96%) were obtained at pH of 5, catalyst mass of 0.5 g/L, initial AR14 concentration of 50 mg/L, and ultrasound power of 36 W. Evaluation of BOD5/COD ratio during dye treatment confirmed that the sonophotocatalysis process can be useful for converting major contaminant molecules into biodegradable compounds. After recycling eight times, the prepared composite still has sonophotocatalytic degradation stability above 90% for AR14. Scavenging tests confirmed that holes (h+) and hydroxyl (OH) were the pivotal agents in the decomposition system. Based on the results, the synthesized sample can be suggested as an excellent and promising sonophotocatalyst for the degradation of AR14 dye and its conversion into biodegradable compounds.

Idioma originalInglés estadounidense
EstadoIndizado - feb. 2023

Nota bibliográfica

Publisher Copyright:
© 2023 by the authors.


Profundice en los temas de investigación de 'Enhanced Sonophotocatalytic Degradation of Acid Red 14 Using Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) Based on Metal-Organic Framework'. En conjunto forman una huella única.

Citar esto