TY - JOUR
T1 - Drought effects on the plasticity in vessel traits of two endemic Magnolia species in the tropical montane cloud forests of eastern Mexico
AU - Rodriguez-Ramirez, Ernesto Chanes
AU - Vazquez-Garcia, Jose Antonio
AU - Garcia-Gonzalez, Ignacio
AU - Alcantara-Ayala, Othon
AU - Luna-Vega, Isolda
N1 - Publisher Copyright:
© 2020 The Author(s) 2020. Published by Oxford University Press on behalf of the Institute of Botany, Chinese Academy of Sciences and the Botanical Society of China. All rights reserved. For permissions, please email: [email protected].
PY - 2020/5/25
Y1 - 2020/5/25
N2 - Aims: We aimed to evaluate how climatic fluctuations influence the plasticity of anatomical vessel traits and the width of annual tree-rings of two relict-endemic Mexican Magnolia species. Notwithstanding, few studies have assessed the drought effect on vessel traits in tropical montane cloud trees of eastern Mexico. Methods: Through digital images of growth rings, we assessed the tree radial growth rate, age of the trees and plasticity in vessel traits regarding climatic fluctuations of the Mexican Magnolia species studied. We compared vessel density, hydraulic diameter and percentage of conductive area in drought years (DY) and non-drought years (NDY) in two Mexican Magnolia species. Important Findings: For the first time, the plasticity that occurs in porous wood vessel traits to long-term climatic fluctuations was analysed for two endangered Magnolia species (Magnolia vovidesii and M. schiedeana) from two tropical montane cloud forests in Mexico. We found that temperature and precipitation were strongly associated with differences in tree-ring width when DY and NDY were compared. Our analyses revealed that a high plasticity in vessel anatomy of diffuse-porous wood was related to temperature and/or water availability for both Magnolia species studied. We concluded that anatomical adaptations to DY resulted in a substantial reduction in vessel traits when compared with NDY, and that the plastic adaptations played an essential role in water transport and safety for the survival of the studied species during stressful long periods.
AB - Aims: We aimed to evaluate how climatic fluctuations influence the plasticity of anatomical vessel traits and the width of annual tree-rings of two relict-endemic Mexican Magnolia species. Notwithstanding, few studies have assessed the drought effect on vessel traits in tropical montane cloud trees of eastern Mexico. Methods: Through digital images of growth rings, we assessed the tree radial growth rate, age of the trees and plasticity in vessel traits regarding climatic fluctuations of the Mexican Magnolia species studied. We compared vessel density, hydraulic diameter and percentage of conductive area in drought years (DY) and non-drought years (NDY) in two Mexican Magnolia species. Important Findings: For the first time, the plasticity that occurs in porous wood vessel traits to long-term climatic fluctuations was analysed for two endangered Magnolia species (Magnolia vovidesii and M. schiedeana) from two tropical montane cloud forests in Mexico. We found that temperature and precipitation were strongly associated with differences in tree-ring width when DY and NDY were compared. Our analyses revealed that a high plasticity in vessel anatomy of diffuse-porous wood was related to temperature and/or water availability for both Magnolia species studied. We concluded that anatomical adaptations to DY resulted in a substantial reduction in vessel traits when compared with NDY, and that the plastic adaptations played an essential role in water transport and safety for the survival of the studied species during stressful long periods.
KW - Magnolia schiedeana
KW - Magnolia vovidesii
KW - adaptability
KW - climate variability
KW - drought-growth relationship
KW - quantitative wood anatomy
UR - http://www.scopus.com/inward/record.url?scp=85089272126&partnerID=8YFLogxK
U2 - 10.1093/jpe/rtaa019
DO - 10.1093/jpe/rtaa019
M3 - Original Article
AN - SCOPUS:85089272126
SN - 1752-9921
VL - 13
SP - 331
EP - 340
JO - Journal of Plant Ecology
JF - Journal of Plant Ecology
IS - 3
ER -