Resumen
Let A be a central arrangement of hyperplanes in Cn defined by the homogeneous polynomial dA. Let Dn be the Weyl algebra of rank n over C and let [Math equation] be the algebra of rational functions on the variety [math equation]. Studying the structure of P as a Dn-module we obtain a sequence of new Dn-modules. These modules allow us to define useful complexes that determine the De Rham cohomology of [math equation]. Finally we compute the Poincaré series of P.
Idioma original | Inglés estadounidense |
---|---|
Páginas (desde-hasta) | 429-444 |
- | 16 |
Publicación | Tokyo Journal of Mathematics |
Volumen | 29 |
N.º | 2 |
DOI | |
Estado | Indizado - 2006 |
Publicado de forma externa | Sí |