Resumen
Density functional theory (DFT) calculations were undertaken to investigate the effect of Fe-doping on the capability of a graphene-like BC3 nano-sheet (Fe@BC3NS) in detecting the gas SO3. The interaction of the pure BC3NS with SO3 was a physisorption, showing that it could not be used as a sensor. However, there was a considerable increase in the sensitivity and reactivity of the BC3NS after Fe was replaced with B. The adsorption energy of SO3 increased from 7.9 to 23.3 kcal/mol after doping Fe into the surface of the BC3NS. Moreover, there was a reduction in the energy gap of Fe@BC3NS (∼-38.9%) after SO3 was adsorbed, which increased the electrical conductivity to a great extent. Therefore, we found that Fe-doping increased the sensitivity of the BC3NS to SO3 with a short recovery time of 9.5 s at room temperature. Our theoretical results further supported the fact that metal@BC3 nano-structures have widespread practical applications.
Idioma original | Inglés estadounidense |
---|---|
- | 113805 |
Publicación | Computational and Theoretical Chemistry |
Volumen | 1215 |
DOI | |
Estado | Indizado - set. 2022 |
Nota bibliográfica
Publisher Copyright:© 2022