TY - JOUR
T1 - A pH-Responsive Hydrogel for the Oral Delivery of Ursolic Acid
T2 - A Pentacyclic Triterpenoid Phytochemical
AU - Gutierrez, Carlos D.
AU - Aranzábal, Rosana L.
AU - Lechuga, Ana M.
AU - Serrano, Carlos A.
AU - Meza, Flor
AU - Elvira, Carlos
AU - Gallardo, Alberto
AU - Ludeña, Michael A.
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/9
Y1 - 2024/9
N2 - In this study, poly(HEMA-PEGxMEM-IA) hydrogels were prepared by radical copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGxMEM), 2-hydroxyethyl methacrylate (HEMA), and itaconic acid (IA). The reaction was carried out in ethanolic solution using N,N′-methylenebisacrylamide (MBA) as a crosslinking agent and 1-hydroxycyclohexyl phenyl ketone (HCPK) as a photo-initiator. The poly(HEMA-PEGxMEM-IA) hydrogels (HGx) were evaluated as a delivery system for ursolic acid (UA), a phytochemical extracted from the plant Clinopodium revolutum, “flor de arena”. The hydrogels were characterized by Fourier-transform infrared spectroscopy (FTIR-ATR), Raman spectroscopy, X-Ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The swelling behavior was studied in buffer solutions from pH 2 to 10, specifically at pH 2.2 (gastric environment) and 7.4 (intestinal environment). It was found that the hydrogels studied showed sensitivity to pH. At pH 2.2, the degree of swelling for HG5 and HG9 hydrogels was 0.45 and 0.93 (g water/g hydrogel), respectively. At pH 7.4, the degree of swelling for HG5 and HG9 hydrogels was 1.97 and 2.64 (g water/g hydrogel), respectively. The SEM images show the variation in pore size as a function of pH, and the UA crystals in the pores of the hydrogels can also be observed. The in vitro UA release data best fit the Korsmeyer–Peppas kinetic model and the diffusion exponent indicates that the release mechanism is governed by Fickian diffusion.
AB - In this study, poly(HEMA-PEGxMEM-IA) hydrogels were prepared by radical copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGxMEM), 2-hydroxyethyl methacrylate (HEMA), and itaconic acid (IA). The reaction was carried out in ethanolic solution using N,N′-methylenebisacrylamide (MBA) as a crosslinking agent and 1-hydroxycyclohexyl phenyl ketone (HCPK) as a photo-initiator. The poly(HEMA-PEGxMEM-IA) hydrogels (HGx) were evaluated as a delivery system for ursolic acid (UA), a phytochemical extracted from the plant Clinopodium revolutum, “flor de arena”. The hydrogels were characterized by Fourier-transform infrared spectroscopy (FTIR-ATR), Raman spectroscopy, X-Ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The swelling behavior was studied in buffer solutions from pH 2 to 10, specifically at pH 2.2 (gastric environment) and 7.4 (intestinal environment). It was found that the hydrogels studied showed sensitivity to pH. At pH 2.2, the degree of swelling for HG5 and HG9 hydrogels was 0.45 and 0.93 (g water/g hydrogel), respectively. At pH 7.4, the degree of swelling for HG5 and HG9 hydrogels was 1.97 and 2.64 (g water/g hydrogel), respectively. The SEM images show the variation in pore size as a function of pH, and the UA crystals in the pores of the hydrogels can also be observed. The in vitro UA release data best fit the Korsmeyer–Peppas kinetic model and the diffusion exponent indicates that the release mechanism is governed by Fickian diffusion.
KW - 2-hydroxyethylmethacrylate
KW - delivery
KW - hydrogel
KW - itaconic acid
KW - pH-responsive
KW - release
KW - ursolic acid
UR - https://www.scopus.com/pages/publications/85205241797
U2 - 10.3390/gels10090602
DO - 10.3390/gels10090602
M3 - Original Article
AN - SCOPUS:85205241797
SN - 2310-2861
VL - 10
JO - Gels
JF - Gels
IS - 9
M1 - 602
ER -