A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images

Maria Isabel Moreno-Lozano, Edward Jordy Ticlavilca-Inche, Pedro Castañeda, Sandra Wong-Durand, David Mauricio, Alejandra Oñate-Andino

Producción científica: Artículo CientíficoArtículo originalrevisión exhaustiva

Resumen

In this article, various convolutional neural network (CNN) architectures for the detection of pterygium in the anterior segment of the eye are explored and compared. Five CNN architectures (ResNet101, ResNext101, Se-ResNext50, ResNext50, and MobileNet V2) are evaluated with the objective of identifying one that surpasses the precision and diagnostic efficacy of the current existing solutions. The results show that the Se-ResNext50 architecture offers the best overall performance in terms of precision, recall, and accuracy, with values of 93%, 92%, and 92%, respectively, for these metrics. These results demonstrate its potential to enhance diagnostic tools in ophthalmology.

Idioma originalInglés estadounidense
-2026
PublicaciónDiagnostics
Volumen14
N.º18
DOI
EstadoIndizado - set. 2024
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2024 by the authors.

Huella

Profundice en los temas de investigación de 'A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images'. En conjunto forman una huella única.

Citar esto