TY - JOUR
T1 - Constraining models for the origin of ultra-high-energy cosmic rays with a novel combined analysis of arrival directions, spectrum, and composition data measured at the Pierre Auger Observatory
AU - Pierre Auger Collaboration
AU - Abdul Halim, A.
AU - Abreu, P.
AU - Aglietta, M.
AU - Allekotte, I.
AU - Almeida Cheminant, K.
AU - Almela, A.
AU - Aloisio, R.
AU - Alvarez-Muñiz, J.
AU - Ammerman Yebra, J.
AU - Anastasi, G. A.
AU - Anchordoqui, L.
AU - Andrada, B.
AU - Andringa, S.
AU - Aramo, C.
AU - Araújo Ferreira, P. R.
AU - Arnone, E.
AU - Arteaga Velázquez, J. C.
AU - Asorey, H.
AU - Assis, P.
AU - Avila, G.
AU - Avocone, E.
AU - Badescu, A. M.
AU - Bakalova, A.
AU - Balaceanu, A.
AU - Barbato, F.
AU - Bartz Mocellin, A.
AU - Bellido, J. A.
AU - Berat, C.
AU - Bertaina, M. E.
AU - Bhatta, G.
AU - Bianciotto, M.
AU - Biermann, P. L.
AU - Binet, V.
AU - Bismark, K.
AU - Bister, T.
AU - Biteau, J.
AU - Blazek, J.
AU - Bleve, C.
AU - Blümer, J.
AU - Boháčová, M.
AU - Boncioli, D.
AU - Bonifazi, C.
AU - Bonneau Arbeletche, L.
AU - Borodai, N.
AU - Brack, J.
AU - Brichetto Orchera, P. G.
AU - Briechle, F. L.
AU - Bueno, A.
AU - Buitink, S.
AU - Ventura, C.
N1 - Publisher Copyright:
© 2024 Institute of Physics. All rights reserved.
PY - 2024/1/1
Y1 - 2024/1/1
N2 - The combined fit of the measured energy spectrum and shower maximum depth distributions of ultra-high-energy cosmic rays is known to constrain the parameters of astrophysical models with homogeneous source distributions. Studies of the distribution of the cosmic-ray arrival directions show a better agreement with models in which a fraction of the flux is non-isotropic and associated with the nearby radio galaxy Centaurus A or with catalogs such as that of starburst galaxies. Here, we present a novel combination of both analyses by a simultaneous fit of arrival directions, energy spectrum, and composition data measured at the Pierre Auger Observatory. The model takes into account a rigidity-dependent magnetic field blurring and an energy-dependent evolution of the catalog contribution shaped by interactions during propagation. We find that a model containing a flux contribution from the starburst galaxy catalog of around 20% at 40 EeV with a magnetic field blurring of around 20◦ for a rigidity of 10 EV provides a fair simultaneous description of all three observables. The starburst galaxy model is favored with a significance of 4.5σ (considering experimental systematic effects) compared to a reference model with only homogeneously distributed background sources. By investigating a scenario with Centaurus A as a single source in combination with the homogeneous background, we confirm that this region of the sky provides the dominant contribution to the observed anisotropy signal. Models containing a catalog of jetted active galactic nuclei whose flux scales with the γ-ray emission are, however, disfavored as they cannot adequately describe the measured arrival directions.
AB - The combined fit of the measured energy spectrum and shower maximum depth distributions of ultra-high-energy cosmic rays is known to constrain the parameters of astrophysical models with homogeneous source distributions. Studies of the distribution of the cosmic-ray arrival directions show a better agreement with models in which a fraction of the flux is non-isotropic and associated with the nearby radio galaxy Centaurus A or with catalogs such as that of starburst galaxies. Here, we present a novel combination of both analyses by a simultaneous fit of arrival directions, energy spectrum, and composition data measured at the Pierre Auger Observatory. The model takes into account a rigidity-dependent magnetic field blurring and an energy-dependent evolution of the catalog contribution shaped by interactions during propagation. We find that a model containing a flux contribution from the starburst galaxy catalog of around 20% at 40 EeV with a magnetic field blurring of around 20◦ for a rigidity of 10 EV provides a fair simultaneous description of all three observables. The starburst galaxy model is favored with a significance of 4.5σ (considering experimental systematic effects) compared to a reference model with only homogeneously distributed background sources. By investigating a scenario with Centaurus A as a single source in combination with the homogeneous background, we confirm that this region of the sky provides the dominant contribution to the observed anisotropy signal. Models containing a catalog of jetted active galactic nuclei whose flux scales with the γ-ray emission are, however, disfavored as they cannot adequately describe the measured arrival directions.
KW - active galactic nuclei
KW - cosmic ray experiments
KW - ultra high energy cosmic rays
UR - http://www.scopus.com/inward/record.url?scp=85184695133&partnerID=8YFLogxK
U2 - 10.1088/1475-7516/2024/01/022
DO - 10.1088/1475-7516/2024/01/022
M3 - Original Article
AN - SCOPUS:85184695133
SN - 1475-7516
VL - 2024
JO - Journal of Cosmology and Astroparticle Physics
JF - Journal of Cosmology and Astroparticle Physics
IS - 1
M1 - 022
ER -